Chapter 9 - Covalent Bonding: Orbitals

9.1 Hybridization and the Localized Electron Model

- A. Hybridization
 - 1. The mixing of two or more atomic orbitals of similar energies on the same atom to produce new orbitals of equal energies
- B. Hybrid Orbitals
 - 1. Orbitals of equal energy produced by the combination of two or more orbitals on the same atom
- C. Evidence for hybridization of carbon Methane and sp³
 - 1. Four bonds of equal length and strength

Carbon's hybridized configuration

Atomic Orbitals

Hybrid Orbitals

- 2. Four effective pairs of electrons surround the carbon
- 3. "Whenever a set of equivalent tetrahedral atomic orbitals is required by an atom, this model assumes that the atom adopts a set of sp³ orbitals; the atom becomes hybridized"
- D. sp² hybridization
 - 1. Trigonal planar structure, 120° angle, in ethene (ethylene) rules out sp³ hybridization
 - 2. sp² hybridization creates 3 identical orbitals of intermediate energy and length and leaves one unhybridized p orbital

3. 3 effective pairs of electrons surround the carbon (double bond treated as one effective pair)

- 4. Sigma bonds (σ bond)
 - a. Bond in which the electron pair is shared in an area centered on a line running between the atoms
 - b. Lobes of bonding orbital point toward each other
 - c. All bonds in methane are sigma bonds
- 5. Pi bonds (π bonds)
 - a. Electron pair above and below the $\boldsymbol{\sigma}$ bond
 - b. Created by overlapping of nonhybridized 2p orbitals on each carbon
- 6. Double bonds
 - a. Double bonds always consist of one σ bond and one π bond

π

20

C. sp Hybridization

1. Each carbon has two hybrid orbitals and two unhybridized 2p orbitals

- 2. Carbon dioxide
 - a. Oxygens have 3 effective pairs of electrons (sp² hybrids)
 - (1) 1 double bond, two lone pairs
 - b. Carbons have 2 effective pairs (2 double bonds)

Notice that the sp2 orbitals on the two oxygens are at 90° angles, as are the π bond between carbon and oxygen

- D. dsp³ Hybridization
 - 1. Five effective pairs around a central
 - 2. Trigonal bypyramidal shape
 - 3. PCl_5 is an example
- E. d²sp³ Hybridization
 - 1. Six effective pairs around a central atom
 - 2. Octahedral structure
 - 3. SF_6 is an example

Question: Why doesn't carbon undergo dsp³ or d²sp³ hybridization, while phosphorous and sulfur do undergo this type of hybridization?

Atomic	Type of	# of hybrid	Geometry	# of Effective
Orbitals	hybridization	orbitals		pairs
s, p	sp	2	Linear	2
s, p, p	sp ²	3	Trigonal-planar	3
s, p, p, p	sp ³	4	Tetrahedral	4
s, p, p,	dsp ³	5	Trigonal	5
p, d			bipyramidal	
s, p, p,	d ² sp ³	6	Octagonal	6
p, d, d				

- 9.2 The Molecular Orbital Model
 - A. Shortcomings of the Localized Electron Model
 - 1. Electrons are not actually localized
 - 2. Does not deal effectively with molecules containing unpaired electrons
 - 3. Gives no direct information about bond energies
 - B. Molecular Orbitals
 - 1. Can hold two electrons with opposite spins
 - 2. Square of the orbital's wave function indicates electron probability
 - C. The Hydrogen Molecule (H₂)
 - 1. Two possible bonding orbitals, shapes determine by Ψ^2

- 2. Bonding takes place in MO_1 in which electrons achieve lower energy (greater stability), with electrons antibonding MO (*) between the two nuclei
- 3. Both orbitals are in line with the nuclei, so they are σ molecular orbitals
- 4. Higher energy orbital is designated as antibonding (*).
- 5. Electron configuration of H2 can be written as σ_{1s}^2
- D. Bond Order
 - 1. Bond order is the difference between the number of bonding electrons and the number of antibonding electrons, divided by two
 - 2. Larger bond order =
 - a. greater bond strength
 - b. greater bond energy
 - c. shorter bond length
- 9.3 Bonding in Homonuclear Diatomic Molecules
 - A. In order to participate in molecular orbitals, atomic orbitals must overlap in space
 - B. Larger bond order is favored
 - C. When molecular orbitals are formed from p orbitals, σ orbitals are favored over π orbitals (σ interactions are stronger than π interactions)
 - 1. Electrons are closer to the nucleus = lower energy

D. Paramagnetism

- 1. Magnetism can be induced in some nonmagnetic materials when in the presence of a magnetic field
 - a. Paramagnetism causes the substance to be attracted into the inducing magnetic field
 - (1) associated with unpaired electrons
 - b. Diamagnetism causes the substance to be repelled from the inducing magnetic field
 - (1) associated with paired electrons

Figure 9.39

One can measure magnetic properties FIRST, and use the results (dia- or para-) to determine the energy order of the molecular orbitals

- 9.4 Bonding in Heteronuclear Diatomic Molecules
 - A. Similar, but not identical atoms
 - 1. Use molecular orbital diagrams for homonuclear molecules
 - B. Significantly different atoms
 - 1. Each molecule must be examined individually
 - 2. There is no universally accepted molecular orbital energy order
- 9.5 Combining the Localized Electron and Molecular Orbital Models
 - A. Resonance
 - 1. Attempt to draw localized electrons in a structure in which electrons are not localized

- 2. σ bonds can be described using localized electron model
- 3. π bonds (delocalized) must be described using the molecular orbital model B. Benzene
 - σ bonds (C H and C C) are sp2 hybridized
 a. Localized model
 - 2. π bonds are a result of remaining p orbitals above and below the plane of the benzene ring

Localized benzene resonance model

Delocalized benzene model

9.6 Photoelectron Spectroscopy (PES)