AP Chemistry A. Allan

Chapter 5 - Gases

- 5.1 Pressure
 - A. Properties of gases
 - 1. Gases uniformly fill any container
 - 2. Gases are easily compressed
 - 3. Gases mix completely with any other gas
 - 4. Gases exert pressure on their surroundings
 - a. Pressure = force/area
 - B. Measuring barometric pressure
 - 1. The barometer
 - a. Inventor Evangelista Torricelli (1643)
 - 2. Units
 - a. mm Hg (torr)
 - (1) 760 torr = Standard pressure
 - b. newtons/meter² = pascal (Pa)
 - (1) 101,325 Pa = Standard pressure
 - c. atmospheres
 - (1) 1 atmosphere = Standard pressure

5.2 The Gas Laws of Boyle, Charles, and Avogadro

- A. Boyle's Law (Robert Boyle, 1627 1691)
 - 1. the product of pressure times volume is a constant, provided the temperature remains the same
 - PV = k
 - a. P is inversely related to V
 - b. The graph of *P* versus *V* is hyperbolic
 - c. Volume increases linearly as the pressure decreases (1/P)
 - 2. At constant temperature, Boyle's law can be used to find a new volumes or a new pressure
 - a. $P_1V_1 = k = P_2V_2$ \therefore

$$P_1V_1 = P_2V_2$$
 or $\frac{P_1}{P_2} = \frac{V_2}{V_1}$

- 3. Boyle's law works best at low pressures
- 4. Gases that obey Boyle's law are called Ideal gases
- B. Charles' Law (Jacques Charles, 1746 1823)
 - 1. The volume of a gas increase linearly with temperature provided the pressure remains constant

a.
$$V = bT$$
 $V/T = b$

(1)
$$V_1/T_1 = b = V_2/T_2$$

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$
 or $\frac{V_1}{V_2} = \frac{T_1}{T_2}$

b. Temperature must be measured in degrees Kelvin

(1)
$$K = {}^{\circ}C + 273$$

- (2) 0 K is "absolute zero"
- C. Avogadro's Law (Amedeo Avogadro, 1811)
 - 1. For a gas at constant temperature and pressure, the volume is directly proportional to the number of moles, n

$$V = an$$
 $V/n = a$
(1) $V_1/n_1 = a = V_2/n_2$:.

$$\frac{V_1}{n_1} = \frac{V_2}{n_2}$$

5.3 The Ideal Gas Law

A. Derivation from existing laws

a.

1.
$$V = k/P$$
 $V = bT$ $V = an$

$$V = (k)(b)(a)\left(\frac{Tn}{P}\right)$$

2. Constants <u>k, b, a</u> are combined into universal gas constant, R

$$V = \frac{nRT}{P}$$
 or $PV = nRT$

$$R = 0.08206 \frac{L * atm}{K * mol}$$

- B. Limitations of the Ideal Gas Law
 - 1. Works well at low pressures and high temperatures
 - 2. Most gases do not behave ideally above 1 atm pressure
 - 3. Does not work well near the condensation conditions of a gas
- C. Solving for new volumes, temp or pressure (*n* remaining constant)
 - 1. Combined law (from general chem)
 - 2.

$$\frac{P_1V_1}{T_1} = n R = \frac{P_2V_2}{T_2} \quad \text{or} \quad \frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$
$$V_2 = V_1 \left(\frac{P_1}{P_2}\right) \left(\frac{T_2}{T_1}\right)$$

5.4 Gas Stiochiometry

- A. Standard temperature and pressure (STP)
 - 1. 0 °C, 273 K
 - 2. 760 torr, 1 atm
- B. Molar volume
 - 1. One mole of an ideal gas occupies 22.42 liters of volume at STP
- C. Things to remember

$$Density = \frac{mass}{volume} \qquad n = \frac{grams \quad of \quad subs \tan ce}{molar \quad mass}$$

5.5 Dalton's Law of Partial Pressures (John Dalton, 1803)

- A. Statement of law
 - 1. "For a mixture of gases in a container, the total pressure exerted is the sum of the pressures each gas would exert if it were alone"
 - 2. It is the total number of moles of particles that is important, not the identity or composition of the gas particles
- B. Derivation

1.
$$P_{TOTAL} = P_1 + P_2 + P_3 + \dots$$

2.
$$P_1 = \frac{n_1 R T}{V} P_2 = \frac{n_2 R T}{V} P_3 = \frac{n_3 R T}{V} \cdots$$

3.
$$P_{TOTAL} = \frac{n_1 R T}{V} + \frac{n_2 R T}{V} + \frac{n_3 R T}{V}$$

4.
$$P_{TOTAL} = (n_1 + n_2 + n_3 + ...) \left(\frac{R T}{V}\right)$$

5.
$$P_{TOTAL} = n_{TOTAL} \left(\frac{R T}{V} \right)$$

- C. Mole Fraction
 - 1. The ratio of the number of moles of a given component in a mixture to the total number of moles in the mixture
 - 2. For an ideal gas, the mole fraction (*x*):

$$\chi_1 = \frac{n_1}{n_{TOTAL}} = \frac{P_1}{P_{TOTAL}}$$

- 5.6 The Kinetic Molecular Theory of Gases (KMT)
 - A. Postulates of the KMT Related to Ideal Gases
 - 1. The particles are so small compared with the distances between them that the volume of the individual particles can be assumed to be zero
 - 2. The particles are in constant motion. Collisions of the particles with the walls of the container cause pressure
 - 3. Assume that the particles exert no forces on each other.
 - 4. The average kinetic energy of a collection of gas particles is assumed to be directly proportional to the Kelvin temperature of the gas
 - B. Explaining Observed Behavior with KMT
 - 1. P and V(T = constant)
 - a. As V is decreased, P increases:
 - *V* decrease causes a decrease in the surface area. Since *P* is force/area, the decrease in *V* causes the area to decrease, increasing the *P*
 - 2. P and T(V = constant)
 - a. As T increase, P increases
 - The increase in T causes an increase in average kinetic energy. Molecules moving faster collide with the walls of the container more frequently, and with greater force
 - 3. V and T(P = constant)
 - a. As T increases, V also increases

Increased T creates more frequent, more forceful collisions. *V* must increase proportionally to increase the surface area, and maintain *P*

- 4. V and *n* (*T* and *P* constant)
 - a. As n increases, V must increase

Increasing the number of particles increases the number of collisions. This can be balanced by an increase in V to maintain constant P

- 5. Dalton's law of partial pressures
 - a. P is independent of the type of gas molecule

KMT states that particles are independent, and *V* is assumed to be zero. The identity of the molecule is therefore unimportant

- C. Root Mean Square Velocity
 - 1. Velocity of a gas is dependent on mass and temperature.
 - 2. Velocity of gases is determined as an average
 - a. M = mass of one mole of gas particles in kg
 - b. *R* = 8.3145 J/K∙mol

(1) joule =
$$kg \cdot m^2/s^2$$

$$u_{rms} = \sqrt{\frac{3 R T}{M}}$$

- D. Mean Free Path
 - 1. Average distance a molecule travels between collisions
 - a. 1×10^{-7} m for O₂ at STP

5.7 Effusion and Diffusion

- A. Effusion
 - 1. Movement of a gas through a small opening into an evacuated container (vacuum)
 - 2. Graham's law of effusion

$$\frac{Rate \ of \ effusion \ for \ gas \ 1}{Rate \ of \ effusion \ for \ gas \ 2} = \frac{\sqrt{M_2}}{\sqrt{M_1}}$$

- B. Diffusion
 - 1. The mixing of gases
 - 2. Diffusion is complicated to describe theoretically and mathematically

5.8 Real Gases and van der Waals Equation (Johannes van der Waals, 1873) A. Volume

- 1. Real gas molecules do have volume
- 2. Volume available is not 100% of the container volume
 - a. n = number of moles

b. b = is an empirical constant, derived from experimental results Ideal Real

$$P = \frac{n R T}{V} \qquad P = \frac{n R T}{V - n b}$$

- B. Pressure
 - 1. Molecules of real gases do experience attractive forces
 - a. *a* = proportionality constant determined by observation of the gas

$$P_{obs} = P - a \left(\frac{n}{V}\right)^2$$

C. Combining to derive van der Waal's eqn

$$P_{obs} = \frac{n R T}{V - n b} - a \left(\frac{n}{V}\right)^2$$

and then rearranging...

$$\left[P_{obs} + a\left(\frac{n}{V}\right)^{2}\right] \times (V - n b) = n R T$$

- 5.9 Characteristics of Several Real Gases
 - A. Intermolecular Forces of Attraction
 - 1. Larger intermolecular forces of attraction increase deviation from ideal behavior
 - 2. For these molecules, the increase in van der Waals forces predicts this increase in deviation from ideal behavior

 $H_2 < N_2 < CH_4 < CO_2$

- 5.10 Chemistry in the Atmosphere
 - A. Composition of the Troposphere

Composition of dry air (sea level	
Component	Mole Fraction
Nitrogen	0.78084
Oxygen	0.20948
Argon	0.00934
Carbon dioxide	0.000345
Neon	0.00001818
Helium	0.0000524
Methane	0.0000168

- B. Photochemical Smog the problem of nitrogen oxides (NO_x)
 - 1. Auto exhaust contains small amounts of NO, which is quickly oxidized $2NO(g) + O_2(g) \rightarrow 2NO_2(g)$
 - 2. Radiant energy causes NO₂ to decompose NO₂(g) \rightarrow NO(g) + O(g)
 - 3. Free oxygen atoms combine with oxygen molecules to form ozone $O(g) + O_2(g) \rightarrow O_3(g)$
 - 4. Ozone may absorb light energy and decompose to excited oxygen atoms and excited oxygen molecules

 $O_3(g) \rightarrow O_2^* + O^*$

- 5. Excited oxygen atoms react with water to form the hydroxyl radical $O^* + H_2O \rightarrow 2OH$
- 6. Hydroxyl can react with NO₂ to form nitric acid OH + NO₂ \rightarrow HNO₃
- C. Coal and acid rain
 - 1. Most coal, especially cheap coal, contains sulfer

$$S(in coal) + O_2(g) \rightarrow SO_2(g)$$

- 2. Sulfur dioxide is oxidized in air
 - $2\mathrm{SO}_2(g) + \mathrm{O}_2(g) \rightarrow 2\mathrm{SO}_3(g)$
- 3. Acid rain forms at the SO3 combines with water in the air SO₃ (g) + H₂O (l) \rightarrow H₂SO₄ (aq)