AP Chemistry

A. Allan

Chapter 2 Notes - Atoms, Molecules and Ions

- 2.1 The Early History Refer to the Chemistry History Timeline for this chapter
- 2.2 Fundamental Chemical Laws
 - A. Law of Conservation of Mass
 - 1. "Mass is neither created nor destroyed"
 - 2. Translation: In ordinary chemical reactions, the total mass of the reactants is equal to the total mass of the products
 - B. Law of Definite Proportion
 - 1. "A given compound always contains the same proportions of elements by mass"
 - 2. Translation: Compounds have an unchanging chemical formula
 - C. Law of Multiple Proportions
 - 1. "When two elements form a series of compounds, the ratios of the masses of the second element that combine with one gram of the first element can always be reduced to small whole numbers
 - 2. Translation: Sometimes two elements can come together in more than one way, forming compounds with similar, though not identical formulas

2.3 Dalton's Atomic Theory

- A. Atomic Theory
 - 1. Each element is made up of tiny particles called atoms
 - 2. The atoms of a given element are identical
 - 3. Chemical compounds are formed when atoms combine with each other. A given compound always has the same relative numbers and types of atoms
 - 4. Chemical reactions involve reorganizations of the atoms. The atoms themselves are not changed in a chemical reaction
- B. Avogadro's Hypothesis

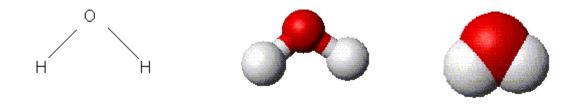
1. At the same conditions of temperature and pressure, equal volumes of different gases contain the same number of particles.

2.4 Early Experiments to Characterize the Atom

- A. J.J. Thomson and the Electron
 - 1. Determined the charge to mass ratio of the electron
 - 2. Reasoned that all atoms must contain electrons
 - 3. Reasoned that all atoms must contain positive charges
- B. Robert Millikan and the Oil Drop
 - 1. Oil drop experiments determined the charge on an electron
 - 2. With charge information, and Thomson's charge/mass ratio, he determined the mass of an electron (9.11 x 10⁻³¹ kg)

- C. Radioactivity
 - 1. Gamma (\cup) rays high energy light
 - 2. Beta (() particles high speed electrons
 - 3. Alpha (\Re) particles nuclear particle with a 2+ charge
- D. The Nuclear Atom Rutherford's Metal Foil Experiment
 - 1. Most alpha particles pass straight through thin metal foil
 - 2. Some particles were greatly deflected ("like a howitzer shell bouncing off of a piece of paper")
 - a. Could not have been deflected by electrons or single protons
 - b. Must have been deflected by a positively charged object of substantial mass
 - 1) Supported concept of a small, central, positive nucleus where most of the atom's mass was concentrated
 - 2) Disproved Thomson's "plum pudding" model
- 2.5 The Modern View of Atomic Structure: An Introduction
 - A. Nucleus
 - 1. Protons positively charged
 - 2. Neutrons no charge
 - 3. Small size, high density
 - a. The mass of all of the cars in the United States in an object that would easily fit in a teaspoon
 - b. A pea with the mass of 250 million tons
 - B. Electrons
 - 1. Negatively charged
 - 2. The source of varying reactivity of different elements
 - 3. Provide most of the atomic volume
 - C. Atomic Number
 - 1. Number of protons
 - D. Mass Number
 - 1. Number of protons + number of neutrons
 - E. Isotopes

1.


- 1. Atoms with the same number of protons (same element) but different numbers of neutrons (mass numbers)
- F. Symbols for the Elements
 - Mass Number ~

²³Na ← Element symbol

Atomic Number

2.6 Molecules and lons

- A. Chemical Bonding
 - 1. Covalent bonding Sharing of electrons
 - 2. Ionic bonding Attraction of oppositely charged ions due to a reaction in which electrons are transferred
- B. Representing Molecules (Covalently bonded)
 - 1. Chemical formula
 - a. Symbols for atoms and subscripts
 - 1) H₂0
 - 2) CH₄
 - 2. Structural formula
 - a. Bonds represented by lines

Ball and Stick

Space Filling

C. Ions

- 1. Cations
 - a. Positive ions formed by the loss of electrons
- 2. Anions
 - a. Negative ions formed by gaining electrons
- D. Ionic Bonding
 - 1. Bond formed by the attraction between oppositely charged ions
 - 2. Ionic bonding forms ionic solids (salts)
 - 3. Ions can be monatomic (one atom) or polyatomic (more than one atom)

2.7 An Introduction to the Periodic Table

- A. Organization
 - 1. Horizontal row is called a "period" (or series)
 - 2. Vertical column is called a "group" or "family"
 - a. Group 1A Alkali metals
 - b. Group 2A Alkaline earth metals
 - c. Group 7A Halogens (Gr, "salt makers")
 - d. Group 8A Noble gases
- B. Naming Elements 104 and beyond

Nil = 0	un = 1	bi = 2	tri = 3	quad = 4
Pent = 5	hex = 6	sept = 7	oct = 8	enn = 9
Element 109	= un (1) nil(0)) enn(9) ium =	unnilennium	

2.8 Naming Simple Compounds

- A. Ionic Compounds
 - 1. Positive ion is always named first, negative ion second

```
You were given a list of ions to memorize on the first day of class
Tips for memorizing the polyatomics:
```

a. Find the "ate" ion (sulfate, for instance)

$$sulfate = SO_4^2$$

- b. The "ite" ion always has one less oxygen than the "ate" ion sulfite = $SO_3^{2^2}$
- c. The prefix "per" (think hyper, meaning "above") is used with the "ate" prefix to indicate one more oxygen than the "ate" ion

persulfate =
$$SO_5^{2-}$$

d. The prefix "hypo" (meaning "under" or "below") is used with the "ite" prefix to indicate one less oxygen than the "ite" ion

hyposulfite =
$$SO_2^{2}$$

Examples (Just because you can name it doesn't mean it exists!)

Perchlorate	CIO ₄ -	Pernitrate
Chlorate	CIO ₃ -	Nitrate
Chlorite	CIO ₂ -	Nitrite
hypochlorite	CIO-	hyponitrite

Pernitrate	NO ₄ -
Nitrate	NO ₃ -
Nitrite	NO ₂ -
hyponitrite	NO-

2. Metals with more than one oxidation state (transition metals) must have a roman numeral to indicate the oxidation state

 $Fe^{3+} = iron$ (III) $Mn^{+2} = manganese$ (II)

- B. Binary Covalent Compounds
 - 1. Must contain two elements, BOTH nonmetals
 - a. First element
 - 1) full element name
 - 2) prefix only if there is more than one atom
 - b. Second element
 - 1) named as if it were an anion (-ide suffix)

2) always gets a prefix

/ J		
mono - 1	penta - 5	octa - 8
di - 2	hexa - 6	nona - 9
tri - 3	hepta - 7	deca - 10
tetra - 4	·	

C. Naming Acids

- 1. Binary Acids (two elements hydrogen + one other)
 - a. prefix "Hydro" + root of second element + "ic" suffix
- 2. Oxyacids
 - a. If the acid contains an anion whose name ends in "ate": Use root of anion name and an "ic" ending $(H_2SO_4 = sulfuric acid)$
 - b. If the acid contains an anion whose name ends in "ite": Use the root of the anion name and an "ous" ending $(H_2SO_3 = sulfurous acid)$